
International Journal Of Scientific & Engineering Research, Volume 3, Issue 4, April-2012                                                                                         1 
ISSN 2229-5518 
 

IJSER © 2012 
http://www.ijser.org 

 

An Efficient Heuristic Algorithm For Fast Clock 
Mesh Realization 

P.Saranya, A.Sridevi 

Abstract— The application of multiple clocking domains with dedicated clock buffer will be implemented. In this paper, an algorithm is proposed for 
determining the minimum number of clock domains to be used for multi domain clock skew scheduling. Non-tree based distributions provides a high 
tolerance towards process variations. The clock mesh constraints are overcome by two processes. First a simultaneous buffer placement and sizing is 
done which satisfies the signal slew constraints while minimizing the total buffer size by heuristic algorithm. The second one reduces the mesh by 
deleting certain edges, thereby trading off skew tolerance for low power dissipation by post processing techniques. Thus comparisons of wire length, 
power dissipation, nominal skew and variation skews using H-SPICE software for various sized benchmark circuits are performed.  

Index Terms—.  Clock skew, Clock Distribution Network, Heuristic, Low Power Variation. 

——————————      —————————— 

 

I. INTRODUCTION 

Clock skew refers to the relative difference of the clock 
latencies of registers. Clock skew is one of the design 
parameter that is very sensitive to process variations.Clock 
skew computes a set of individual delays for the clock 
signals of the registers and latches of synchronous circuits 
to minimize the clock period. In practice, a clock schedule 
with a large set of arbitrary delays is becoming unreliable. 
This is because the implementation of dedicated delays 
using additional buffers and interconnections is highly 
susceptible to within-die variations of process parameters.  

The function of clock distribution network is to deliver 
the clock signal from the clock source to the clock sinks.In 
the formulation of the problem, process variation is not a 
direct consideration. The fact is,this technique helps to 
make it practical to inject a limited number of skew values 
into the circuit. A fast and efficient combinatorial algorithm 
is presented to design or optimize the distribution network 
and is also proposed that it can be used at design time to 
decide the number of distribution network  to be used and 
their associated skew values such that the number of 
required buffers, as well as the resulting clock period, is 
minimized.Our proposal includes the following 
contributions: 
  
P.Saranya, P.G.Scholar 
Department of Electronics &Communication Engineering,  
SNS College of Technology,Coimbatore, India  
Email: digisaran@gmail.com  
 A.Sridevi 
Department of Electronics &Communication Engineering,  
Assistant Professor, 
SNS College of Technology,Coimbatore, India  
Email:srideviarumugam07@gmail.com  

i. To find the mesh buffer locations and their sizes 
using greedy algorithm on a discrete set of libraries 
of buffer sizes. 

ii. The process of removing the noncritical wire 
segments in a clock mesh to minimize the power 
dissipated was to be formulated by network 
survivability theory. 

iii. We have to achieve the most desirable skew-power 
tradeoff, which becomes flexible enough to allow a 
high range of tradeoff. 

Higher skew would bring down the maximum 
permissible delay. A mesh architecture is suited well for 
high-performance systems since it mitigates clock skew at 
the expense of high resource consumption. With power 
occupying an increasingly important role in chip design, it 
is necessary to find the most desirable skew-power tradeoff. 

The remainder of this paper is organized as follows. 
Section II contains the list of Literature Survey done. 
Section III comprises of the methodology used in the work. 
Section IV gives the results and discussions. Section V gives 
the work done and conclusion.   

II. RELATED WORK 
 
In combinatorial optimization, the most important 
challenges are presented by problems belonging to the class 
NP-hard. The solution returned will be within a relative 
distance from the optimum. The design of approximation 
algorithm relies in a number of techniques, which usually 
involve clever analysis of the relaxation of integer problems 
to linear or semidefinite formulations. One of the 
motivations for developing approximation algorithms is to 
find good solutions for problems that are provably difficult. 
Another motivation is to better understand the intrinsic 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 4, April-2012                                                                                         2 
ISSN 2229-5518 
 

IJSER © 2012 
http://www.ijser.org 

 

difficulty of the problems.[11] Link based non-tree clock 
distribution is a cost-effective technique for reducing clock 
skew variations. It is limited to unbuffered clock networks 
and neglected spatial correlations in the experimental 
validation. We overcome the shortcomings and make the 
link based non-tree approach feasible for realistic designs. 
The short circuit risk and multi-driver delay issues in 
buffered non-tree clock networks are examined. Skew 
tuning is used to synthesize a clock tree with low nominal 
skew under a higher order delay model. The effect of link 
insertion depends on a well-designed buffered clock tree 
which enhances the effectiveness of link insertion. Link 
insertion in a buffered network may result in multiple 
drivers for a subnet.[7]. Process variation, RLC delay 
matching and scalability with die size and process 
generation are the classic challenges in high speed clock 
distribution design. An architecture for achieving sub-10ps 
global clock uncertainty that addresses each one of these 
issues without additional clock jitter or layout area is 
presented. Included is a method to limit global clock skew 
to a single inverter stage delay independent of die size and 
management of practical constraints due to schedule, 
changing floor plan, die size, clock loading and process 
independence. Wirelength of clock routing trees should be 
minimized in order to reduce system power requirements 
and deformation of the clock pulse at the synchronizing 
elements of the system. The deferred-merge embedding 
(DME) algorithm, embeds any given connection topology 
to create a clock tree with zero skew while minimizing total 
wirelength. The algorithm always yields exact zero skew 
trees with respect to the appropriate delay model. The 
circuit speed is increasingly limited by two factors: i) delay 
on the longest path through combinational logic, and ii) 
clock skew, which is the maximum difference in arrival 
times of the clocking signal at the synchronizing elements 
of the design by the inequality governing the clock period 
of a clock signal.[3] A mesh construction procedure which 
guarantees Zero skew under the Elmore delay model, using 
a simple and efficient linear programming formulation. 
Buffers are inserted to reduce the transition time (or rise 
time). As a post-processing step, wire width optimization 
under an accurate higher-order delay metric is performed 
to further minimize the transition time and propagation 
delay skew[12]. Thus the hybrid mesh tree construction 
scheme can provide smaller propagation delay and 
transition time than a comparable clock tree. 

III. PRELIMINARIES 

Certain conventions and notations that are to be used 
in this paper are introduced below as 

i. Clock mesh has set of nodes with dimension An x 
Bn. Buffer sizes ranges from 1 to K in a non-
decreasing order. The ith buffer can drive a load 
capacitance of atmost Ci. 

ii. The buffer mapping functions maps each node 
location i and j to set of nodes and buffer sizes 
respectively. The problem implies that the ith 
value of buffer mapping function becomes null, 
thus it has no buffer in the ith location of the clock 
mesh. 

iii. The set of clock sinks ranges from S1 to Sc without 
any loss of generality, thereby every buffer is 
connected to the set of nodes in the clock mesh. But 
these clock sinks are connected to the closest point 
in the mesh which are not available in the covering 
regions. 

iv. The minimum distance between nodes i and j in 
the mesh is given by Aij.The maximum permissible 
delay, Pijdelay between two registers i & j is given 
as,Pdelay=min(i,j)Pijdelay. 

 
IV      HEURISTIC ALGORITHMS 

A. Algorithm Description 

A greedy algorithm is any algorithm that follows the 
problem solving heuristic of making the locally optimal 
choice at each stage with the hope of finding the global 
optimum. For example, applying the greedy strategy to the 
traveling salesman problem yields the following algorithm: 
"At each stage visit the unvisited city nearest to the current 
city". In general, greedy algorithms have five pillars: 

1. A candidate set, from which a solution is created. 
2. A selection function, which chooses the best 

candidate to be added to the solution. 
3. A feasibility function, that is used to determine if a 

candidate can be used to contribute to a solution. 
4. An objective function, which assigns a value to a 

solution, or a partial solution.   

A solution function, which will indicate when we have 
discovered a complete Greedy algorithms appear in 
network routing. Using greedy routing, a message is 
forwarded to the neighbouring node which is "closest" to 
the destination. The notion of a node's location (and hence 
"closeness") may be determined by its physical location, as 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 4, April-2012                                                                                         3 
ISSN 2229-5518 
 

IJSER © 2012 
http://www.ijser.org 

 

in geographic routing used by ad-hoc networks. Location 
may also be an entirely artificial construct as in small world 
routing and table. A greedy algorithm can be thought of as 
a backtracking algorithm where at each decision point "the 
best" option is already known and thus can be picked 
without having to recurse over any of the alternative 
options. Greedy algorithms tend to be very efficient and 
can be implemented in a relatively straightforward fashion. 
Many a times in O(n) complexity as there would be a single 
choice at every point solution. 

Clock mesh implementation requires an array of mesh 
drivers, shown in fifth level of second block in fig1 is  to 
drive the massive RC network of the clock mesh. The 
benefit of the mesh net is that it smoothes out the arrival 
time differences from the multiple mesh drivers that drive 
it. The top trace is the ideal clock, the top pair of traces 
shows the skew just before the mesh, and the bottom pair of 
traces shows the skew just after the mesh. 

     
Fig1. Clock Structures - Conventional clock tree and clock mesh  

B. Node Co-ordinate Determination 

 

 

 

 

 

 

           Fig2. Node  co-ordinate integration for mesh by greedy 

For the buffer mapping function to be estimated : 
1) the requirement of buffer is noted. 2) the size of buffer 
needed with the each node in the mesh allocated to at least 
one buffer and each buffer driving less than the maximum 
load it can drive.The Covering Region(CR) of the node for a 
particular buffer is defined as the set of nodes around the 
node in the 2-D mesh such that the total capacitance of the 
nodes included in the covering region is less than the 
maximum capacitance that the buffer can drive. If any more 
edges in the mesh are added, then the capacitance of the 
region will be greater than the maximum load that the 
buffer can drive. The greedy algorithm pick the set that 
covers the most nodes and then throw away the nodes that 
are covered. The process is repeated until all nodes are 
covered. 

The algorithm may return two buffers for the same 
location, which is not a feasible solution. Thus, such a 
situation can be easily avoided by using the observation. 

Observation 1: A bigger buffer size can drive a bigger 
load.For any node i with solution Φ, if there are more than 
one buffer driving a node,one can pick the biggest buffer 
without losing feasibility. 

C. Steiner Reduction 

 After the integration of the position of the mesh 
buffers and their sizes ,the next task is to reduce the size of 
the mesh. This is done by removing edges such that a 
certain level of redundancy is still maintained. Remove 
edges from the mesh such that 1)each sink Sc has at least k 
node locations such that for each such node locations j,      
Aij  ≤ Lmax , BM(j) ≠ Φ and there exists at least l edge disjoint 
paths between j and  i  and 2) the number of edges removed 
is maximized. 

 

 

 

 

 

 

 

             Fig3. Steiners Reduction 

Input   : The buffer cost and node to be tested. 

Output : BR , Reduced buffer cost. 

1. Define the cost of node, e. 
2. Initialize BR ← Φ 
3. Find K nearest nodes for the tested nodes. 
4. Determine the minimum cost , lmin 
5. For each e � lmin  
6. BR←BR U e 

Input   :N,Number of buffers to be tested. 

Output:S,Set of Integrated nodes. 

1. Initialize S = null 
2. Determine the mesh dimension   An X Bn 
3. Define the buffer sizes,K. 
4. Calculate Effective capacitance CE=  K/|(CR - S)| 
5. Choose least CE→LCE 

6. S←S U  LCE 

 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 4, April-2012                                                                                         4 
ISSN 2229-5518 
 

IJSER © 2012 
http://www.ijser.org 

 

The user defined parameters control impact the 
solution as k and l high would mean more redundancy and 
hence more tolerance to variations but less number of edges 
removed or more power dissipation. Thus after mesh 
reduction the buffers could be driving a load that is 
significantly lesser than that of a complete mesh. Hence, as 
a postprocessing step we compute the new load and 
downsize the buffers accordingly. 

 

V     EXPERIMENTAL RESULTS 

In order to mention the effectiveness of the 
aforementioned techniques, we conducted the following 
algorithms 1) Compare our node co-ordinate integration 
greedy algorithm for various sizings. We do the 
comparisons for the minimum, medium and maximum 
sizing of buffers, 2) Comparison of our Steiner reduction 
algorithm with that of the complete meshes, 3) Finally the 
run time results are also achieved and compared against 
various sizing of buffers in a complete mesh.  

The greedy and Steiner reduction algorithms were 
implemented in C++ and the simulations were generated on 
a Linux work station .The test cases of the benchmark 
circuits were simulated in HSPICE using 180nm process 
model from Berkeley Predictive Technology Model and the 
results are compared for various sizing of circuits. 

 

           Fig 4. Output waveform with minimum size buffer 

The run time of our algorithm is within a few 
seconds as verified from the Table1.It becomes one of the 
fine tuning technique and not an optimizing procedure. 
Such a reduction in area though small could be significant 
in high performance designs. Hence the minimum buffer 
sizing achieves the low power dissipation of about 40u 

approximately while the medium and maximum sizing 
achieves with a larger power as obtained in waveform 
simulation. 

 

Fig 5. Output waveform with medium size buffer 

 

           Fig 6. Output waveform with maximum size buffer 

Thus the Fig4 ,Fig5 and Fig 6 gives the power 
versus clock time trade-off curve for test case S9234 .The   
Y-axis measures the power dissipation and X–axis 
measures the time value for the various sizing of the 
circuits done using heuristic algorithms by a HSPICE 
model. The Table1 provides the comparison of parameters 
(memory,cputime,etc.,) for various sizings. Thus the 
following inferences can be made as Using the minimum 
buffer size results in an area reduction of about 10% 
comparitively to other sizings. Medium buffer sizes satisfy 
slew constraints in all but except of one case whereas large 
buffer size satisfies the slew constraints in all the cases. But 
it can be achieved only with an area penalty of  18%(35%) 
for medium (maximum)buffer sizes. 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 4, April-2012                                                                                         5 
ISSN 2229-5518 
 

IJSER © 2012 
http://www.ijser.org 

 

TABLE 1 

             RESULTS FOR BUFFER SIZING FOR TEST CASE S9234 

Test case – 
S9234 

Sizing 

 Minimum   Medium Maximum 

Memory 
used 

1097 
kbytes 

1865 
kbytes 

3547 
kbytes 

CPU Time 3.8 sec 6.48 sec 14.01 sec 

Transient 
time  

2.65 5.67 12.96 

Mosfets 
defined 

150 290 560 

Total 
Iteration 

9900 10894 12130 

Output 
analysis 

0.39 0.66 0.86 

Operating 
point 

0.05 0.07 0.11 

Nodes 141 273 531 

Elements 308 592 1138 

 
     

 
VI  CONCLUSION 

 
The research work has been focused on sizing the 

interconnect elements within the clock mesh. We believe 
that sizing the interconnect wire segments of the clock 
mesh and the buffers driving the mesh simultaneously 
would yield more improvement in the power of a clock 
mesh area satisfying the constraints. The work presented 
here can be easily extended for sizing buffers and mesh 
elements simultaneously. Since, our design techniques are 
faster, it offers the flexibility to optimize clock mesh with 
different design objectives. The slew constraints are also 
satisfied while minimizing the total buffer size in a 
simultaneous buffer placement and sizing module. The 
number of mesh in the distribution network is also reduced 
by deleting certain edges, thereby trading off skew 
tolerance for low power dissipation. The various 
benchmark circuits are considered and their performance 
measures are determined by above heuristic algorithms. 

 
REFERENCES 

 
[1] J. Burkis, “Clock tree synthesis for high performance ASIC‘s,” in 
Proc. IEEE Int. Conf ASIC, pp. 9.8.1-9.8.4, 1991. 
[2] P. K. Chan and K. Karplus, “Computing signal delay in general RC 
networks by tree/link partitioning,” IEEE Trans. Computer- Aided 
Design, pp. 898-902, Aug. 1990. 
[3] S. Dhar, M. A. Franklin, and D. F. Warm, “Reduction of clock 
delays in VLSI structures,” in Proc. IEEE Int. Conf Computer Design, pp. 
778-783, 1984. 
[4] A. Rajaram, D. Pan, and J. Hu. Improved algorithms for link based 
non-tree clock network for skew variability reduction. In Proceedings 
of the ACM International Symposium on Physical Design, pages 55{62, 
2005}. 
[5] M. Edahiro. A clustering-based optimization algorithm in zero-
skew routings. In Proceedings of the ACM/IEEE Design Automation 
Conference, pages 612{616, 1993}. 
[6] S. Pullela, N. Menezes, J. Omar, and L. T. Pillage. Skew and delay 
optimization for reliable buffered clock trees. In Proceedings of the 
IEEE/ACM International Conference on Computer-Aided Design, 
pages 556{562, 1993}. 
[7] J. G. Xi and W. W.-M. Dai. Buffer insertion and sizing under process 
variations for low power clock distribution. In Proceedings of the 
ACM/IEEE Design Automation Conference, pages 491{496, 1995}. 
[8] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy,  Proof 
verification and the hardness of approximation problems, J. ACM, 45 (1998), 
pp. 501–555. Prelim. version in FOCS’92. 
[9] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, And M. Protasi, Complexity and approximation, Springer-
Verlag, Berlin, 1999. Combinatorial optimization problems and their 
approximability properties, With 1 CD-ROM (Windows and UNIX). 
[10] U. FEIGE, A threshold of ln n for approximating set cover (preliminary 
version), in Proceedings of the Twenty-eighth Annual ACM 
Symposium on the Theory of Computing (Philadelphia, PA, 1996), 
New York, 1996, ACM, pp. 314–318. 
[11] Approximation thresholds for combinatorial optimization problems, in 
Proceedings of the International Congress of Mathematicians, Vol. III 
(Beijing, 2002), Beijing, 2002, Higher Ed. Press, pp. 649–658. 
[12]S. Pullela, et al., “Skew and Delay Optimization for Reliable 
Buffered Clock Trees,” Proceedings of the /€€HACM lntemational 
Conference on Computer-Aided Design, pp. 556-562, 1993. 
[13] J.P.Fishbum, “Clock skew optimization,” IEEE Transactiom on 
Computers, vol. 39, pp. 945-951,J ul. 1990. 


